
a

II

~00

THE ISIS PROJECT: Final Technical Report

Project term: February 5, 1985 - May 31, 1987

Kenneth P. Birman

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

DTI.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), ARPA
Order No. 5378, under contract MDA903-85-C-0124 issued by the department of the Army.

The view, opinions and findings contained in this report are those of the authors and should
not be construed as an official DoD position, policy, or decision.

pop"".,

,ECURITY CLASSIFIKATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188[1 Exp Date Jun30. 1986

- "a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b OECLASSIFICATION/DOWNGRADING SCHEDULE Approved for Public Release
Distribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

.a NAME OF PERFORMING ORGA1I9ZATION ' 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Kenneth P. Birman, Assist. Prof (if applicable)

CS Dept., Cornell University Defense Advanced Research Projects Agency/ISTO

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Defense Advanced Research, Project Agency
Attn: TIO/Admin, 1400 Wilson Blvd.
Arlington, VA 22209-2308

Ba. NAME OF FUNDING SPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
DARPA/ISTO [

8c. ADDRESS(City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

See 7b. ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

The ISIS Project: Final Technical Repurt

12 PERSQNAL A THOR(S1
Kenneth P. Birman

13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (YearMonthDay) 15 PAGE COUNT
Technical (Special) FROM2 /5/85 TO T14 September 1, 1987 12
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report summarizes the accoraplishments of the ISIS project during the
entire funding period. It assumes some knowledge regarding our overall effort.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0] DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I 22c OFFICE SYMBOL

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editioni are obsolete

Academic Staff

Kenneth P. Birman, Princijal Investigator

Trhomas A. Joseph, Research Associate

Graduate Students

Amr. El. Abbadi

Richard Koo

Kenneth Kane

Accession For
Frank SchmuckNTSCA&

Ajei Gopal DTIC TAB
Unannounced 0

IBy
IDistrbit4. on/-
Avai-l-. .- Codes

Arotr

-1-

f
I

1. Description of Progress

This report summarizes the accomplishments of the ISIS project during the entire fund-

ing period. It assumes some knowledge regarding our overall effort.

2. Summary of activities on technical areas identified in the initial contract.

-- During the first two and one-half years of DARPA funding of the ISIS project our effort

was focused on support for resdlent objects: abstract data types capable of tolerating fiihirep

Below, we list the major tasks that we were asked to address in connection with this concept.

In each case, the actual accomplishments of the project are discussed: "N

1.j Techniques for ef/iciently irnplementing resilient objectso, It is increasingly clear that

existing methods for producing fault-tolerant software are inadequate. Although several

groups claim to have developed such technologies, the fact that so few distributed sys-

tems actually exist argues that none has yet achieved wide success. Distributed applica-

tions that do exist are generally intolerant of failures, and are often surprisingly non-

distributed in their internal architecture. For example, tbe UNIX network file system

(NFS) maintains no distributed state information, and the ARPANET mail and bulletin

board facilities are notoriously unreliable. Yet, few other distributed "application" pro-

grams of any kind exist.

Several projects have attempted to address this shortcoming. At MIT, the ARGUS pro-

ject developed a transactional language for fault-tolerant distributed computing. How-

ever, this approach does not (yet) provide any help if the goal is to replicate data. The V

project, at Stanford, developed a system based on inexpensive remote procedure calls and

the grouping of programs providing a service into process groups that clients can access

with no knowledge of the current group membership. However, V provides little help in

tolerating failures. ISIS-I, the first version of the ISIS system, adopted an approach that

combines elements of these two systems: a resilient object is programmed using a

-2-

language similar to ARGUS, but compiles into a distributed program capable of function-

ing correctly despite site and program crashes and concurrent requests from application

programs. Our approach was uniquely transparent: programmers who construct a resi-

lient object describe it as if it were not distributed and failures never happen: replication

of data, failure handling, and recovery mechanisms are all provided by the ISIS-1 system.

Similarly, clients issue RPC's to a resilient object as if it were a single instance of the

specified abstract datatype executing at some single site; actual execution of the request

is automatically handled by ISIS-1.

2. Proc'dures f[r umpr,,wing reslient ijiect perjurmance, Performance is one of the basic

problems we confronted in connection with our resilient object approach, and we

developed a unique con,'urrent updating mechanism for dealing with this issue. The

mechanism is based on a new asynchronous broadcast primitive, the causal broadcast,

which has turned out to be one of the most important contributions of our two year effort.

By combining this mechanism with several others, we achieved replicated update perfor-

mance that was roughly as fast as a single-site read request would be in a typical sys-

tem. This performance exceeds that which can be obtained with any other approaches.

On the other hand, like ARGUS, resilient objects suffer from some insurmountable forms

of overhead. What we found is that because resilient objects use a transactional correct-

ness constraint, performance of such an object can never be as good as for a system that

can get away with some cheaper correctness constraint. Moreover, because resilient

objects are discrete entitied, and are not compiled directly into their clients, the costs of

just getting a request to them can be high -- measured in milliseconds in many cases.

We return to this issue below. To summarize, because of our concurrent update algo-

rithm, resilient object performance is extremely good -- far better than we imagined could

be possible. However, performance could be still better if non-transactional correctness

constraints could be used instead of the ARGUS-like transactional one we adopted, and if

the mechanisms could be unbundled from the rigid "abstract type" framework in which it

-3-

was packaged.

3. "'echnt ques for in inun izing inter-sile t' essiqle traffic in a system supportuig resthent

,,bjects. In this area, we developed a number of techniques for asynchronous broadcasting

-and-piggybacking. These are interesting because they can boost performance consider-

ably above the le-tel that can be achieved using a "greedy" point to point RPC interac-

tion. The approach has lead us to develop a suite of broadcast primitives that are

integrated into a package, and to code algorithms that exploit the cheapest possible prim-

itive for each type of activity they undertake. The causal broadcast mentioned above is

one of these; the suite covers a full range of broadcast types. This approach runs con-

trary to the accepted wisdom in distributed systems design, which has been increasingly

oriented towards support fir efficient RPC mechanisms. As a result, we are deeply

involved in efforts to develop new message transport protocols capable of efficiently sup-

porting broadcast interactions between sites in a distributed system.

4. A prototype version ,f the ISIS-I system capable of supporting simpie objects. A prototype

has existed for more than two years, and has been demonstrated to ourlARPA program

director (currently, Dr. Dennis Perry. A second generation system, quite different from

.. this first system, but preserving a form of upward compatibility, is now under develop-

ment. We describe it further below.

5) valuation ofthe prototype. A performance evaluation of the ISIS-1 prototype was under-

taken, and reported in [2].:, This evaluation was based on some simple application

software for maintaining a distributed database of appointments (a calendar) and for a

simple process control application. The applications performed well enough to confirm

that our concurrent update mechanism yields excellent replicated data update perfor-

mance. At the same time, the absolute performance of the system was not as high as we

would like.

.4.

Systematic -study has revealed that the overhead in question stems primarily from two

aspects. First, the system is transactional and the associated concurrency control mechanisms

are costly. Secondly, resilient objects exist independent of their clients. A consequence is that

one cannot access such an object without sending it a message, and even when the client and

the object are coresident at a single site, this imposes substantial costs. Moving from UNIX to

a system like V might reduce these costs. Overall, however, a more basic system restructuring

seems to be indicated.

3. The distributed systems tool kit

Early this year we began work on a new system that we expect to complete this summer,

and which is replacing the ISIS-1 prototype in our experimental work here at Cornell. We call

the new system ISIS-2. ISIS-2 retains the mechanisms that worked best in ISIS-I, while strip-

ping from it the aspects that proved to be bottlenecks. The overall form of this system is as

fillows. At the lowest level, it consists of an implementation of a suite of broadcast communi-

cation protocols that support virtually synchronous process groups. This concept, which we dis-

cuss in several papers, represents a breakthrough in our approach to distributed systems con-

struction. Like V, it is an approach oriented towards support for process groups, but unlike V,

issues relating to tolerance of failures and supporting high levels of concurrency are addressed

are part of the process group mechanism. For example, members of a virtually synchronous

process group can migrate from site to site, or can exchange responsibility for processing some

task, without any risk of a client interacting with the group before the change has completed.

Because all group members receive a given message if any does, and all receive it in the same

-state", the approach creates a remarkably simple environment within which to develop distri-

buted algorithms. Moreover, performance can be extremely high -- in comparison with ISIS-i,

this is a real "RISC" approach to distributed computing. At the same time, it is an environ-

ment fully capable of supporting the mechanisms used in the ISIS-1 prototype.

°5.

Few programmers have the sophistication to program at the level of asynchronous distri-

buted broadcasts, even in an environment providing virtual synchrony (the appearance that

one event happens at a time). Accordingly, we are packaging our primitives into a set of tools

that will form a library of mechanisms covering all the types of actions that distributed pro-

grams need most often. A paper that we will present at the upcoming SOSP conference in

Austin covers this approach, which has generated widespread interest and enthusiasm among

researchers in the field who have learned of it. An implementation of the primitives was com-

pleted this month, and the first version of the toolkit is just starting to limp along. By the end

of this summer, we expect to have a fully operational toolkit with some non-trivial application

software running on it.

4. Asynchronous bulletin boards

Distributed artificial intelligence programs are often constructed using a bulletin board

paradigm whereby information is shared through one or more common bulletin boards on

which processes can post and read information at will. A bulletin board is a simple and highly

asynchronous form of shared memory, and it occurred to us that these might provide a cheaper

mechanism than resilient objects accomplishing much the same goal. A paper describing our

approach has been written, and an implementation of the mechanism is underway as one of

the "tools" in the distributed systems toolkit reported above.

5. The importance of compatibility

We used to believe that all distributed applications could somehow be twisted to fit into

the resilient object approach -- much as the ARGUS project twists all applications into nested

actions, V into process groups interacting via RPC, and LOCUS into replicated files, UNIX,

which simply provides communication paths, is outstanding at providing high bandwidth data

streams and even network access to file systems, but much weaker at providing fancier

mechanisms on top of these streams. We no longer believe that any one approach -- even our

own -- can address the needs of every possible class of system. A more realistic approach is to

-6.

I

concede that each of these techniques is nearly ideal for some class of applications, but that

none is ideal for all classes. Thus, th- ISIS-2 system may well provide a uniquely high quality

of support for maintaining consistent replicated data structures, migrating tasks from site to

site, and recovering from failures. Yet, ISIS-2 will inevitably have to coexist with high

bandwidth stream mechanisms, transactional database mechanisms, and network file systems.

This argues that the toolkit routines must be designed in such a manner as to be compatible

with one another -- it should not ever be the case that the use of one routine renders another

incorrect, or that the use of some other mechanism (like a high bandwidth communication

channel) invalidates an assumption made by some other part of the system. ISIS-2 is being

designed with this in mind. Over a pericd of time we will provide interfaces to a wide range of

UNIX mechanisms, transactional mechanisms, etc. in such a manner as to guarantee that the

correctness of all of these mechanisms is preserved regardless of how they are combined.

6. A serious application

At the present stage of our research, serious applications are needed to push ISIS-2 to its

Jimitq We are colhk- ting with Ke;'h Marzull(, nn *he development of several kinds of such

applications. These will be in the area of distributed file systems (we are constructing an

"RFS" program that will provide file replication and fault-tolerance using normal UNIX NFS

systems as its components), distributed process control (we are investigating the adaptation of

some of Keith's work on clock synchronization to realtime issues within ISIS-2) and program-

ming in the large. In light of this, we expect ISIS-2 to be supporting a moderate user com-

munity on a regular basis by the end of 1987.

7. Network partitioning

A final area in which we have made recent progress concerns network partitioning. The

current approach to ISIS-2 is intolerant of partitioning - partitioning failures can cause it to

"hang" until the partition resolves itself. In a local area network, this will not be much of a

problem because such networks simply do not partition very often. Howeve- ;n larger

-7-

networks, clusters of ISIS-2 sites may have to be interconnected over links that do partition,

and blocking in this case is unsatisfactory. Most existing work on partitioning is oriented

towards databases, which assume a transactional correctness constraint. As noted above,

ISIS-2 no longer assumes this about application software Thus. new techiniques for dealing

with partitioning are needed.

Working with Ajei Gopal, a new graduate student member of the project, some hope for

non-blocking communication across partitionable links has now emerged. Our approach

allows for a special class of long running protocols, which can be derived in a mechanical

manner from conventional protocols such as the broadcast protocols used within ISIS-2.

Rather than run the usual ISIS-2 protocols directly across links that can partition, these spe-

cial protocols would be used in a hierarchical fashion. Good performance, rapid termination,

and tolerance of partitioning results. We expect to complete a paper on this new work during

the summer or fall of this year. Moreover, an implementation will be undertaken as part of

our new system.

8. Budget

A budgetary summary for the entire period of support appears below. All expenditures

are in line with projections under our original budget.

-8-

Birman - Darpa final report -

E66-8325
Darpa - MDA903o85-C-. 124 DSS - 9/30/87

Year I Year II Total Actual
Salar Ies ar- Wages Budget Budget Funding Expenses
Principal Investigator
S#-mer $16.600 S17.800 $34.400 $34,044
Acdemcyear 5,375 5,840 11,215 $20,150

Professionals
Research Assoclate 12,500 33,000 45,500 $49,352
Programmer 0 $9,000
Secretary 4,200 4,600 8,800 $10,106

Oraduate Students
AcademIc year 54,810 50,860 105,670 $129,731
Summer 16,800 18,000 34,800

Ugrad 4,115 4,420 8,535

Total Salaries and Wages 114,400 134,520 248,920 252,383
Employee Beneftls
Summer 1,660 1,780 3,440 $3,404
Academ ic year 6,158 12,272 18,430 24,527

Oeneral Expenses
Travel domestic 6,000 7,000 13,000 $14,044
Miscellaneous
Supplies 3,600 4,000 7,600 $7,792
Publications 2,400 2,400 4,800 $2,857
Computer supplies 2,000 2,000 4,000 $643
Computer maintenance 7,200 7,500 14,700 $4,035
Lecturer fees $834
Equipment 68,000 68,000 $76,360

Indirect cost 72,876 94,310 167,186 163,197

Total $284,294 $265,782 $550,076 550,076

NOTE: Any deviation from the original budget received prior approval
from Dennis Perry.

9

4

9. Bibliography-

Below, we list all publications (f the project during the period of DARPA funding,

1 K. Birman, T. Joseph, T. Raeuchle, and A. El Abbadi. Implementing Fault-Tolerant Dis-

tributed Objects. IEEE Transactions on Software Engineering, TSE-11, 6, (June 1985),

502-508,

,2 1 K. Birman. Replication and Fault-Tolerance in ISIS. 10th ACM Symposium on Operat-

ing Systems Principles, December 1985.

,3 T. Joseph, K. Birman. Low-Cost Management of Replicated Data in Fault-Tolerant Dis-

tributed Computing Systems. ACM Trans. on Computing Systems, 4,1 (Feb. 1986), 54-70.

14] T. Joseph. Birman. Lw-Cost Management of Replicated Data in Fault-Tolerant Distri-

buted PIhD. dissertatin, Cornell University, December 1985.

[51 K. Bi-man, T. Joseph. Exploiting virtual synchrony in distributed systems. Department

of Comp. Sci., Cornell University, TR 87-811 (Feb. 1987), submitted to: ACM SIGOPS

SOSI1.

[6] K. Birman. Communication Support for Reliable Distributed Computing. Proc. Asilomar

Workshop on Fault Tolerant Distributed Computing, March 1986.

[7] T. Raeuchle. Concurrency control for libraries of types objects. Phi). dissertatwln, Cor-

nell University, June 1986.

[8] A. El Abbadi, S. Toueg. A paradigm for distributed replicated database protocols.

Department of Comp. Sci., Cornell University, frrthComL1g. submitted to: ACM

SIGA ('TISIGOPS POD('.

[9] A. El Abbadi A paradigm for distributed replicated database protocols. Ph-D. disserta-

tu)n, Cornell University, August 1987.

[101 K. Birman, T. Joseph, P. Stephenson, F. Schmuck. Programming with asynchronous bul-

letin boards in distributed systems. Department of Comp. Sci., Cornell University, TR

10

86-772, (August 1986; revised December 1986), submitted to: ACM TOCS.

[11] K. Birman and T. Joseph. Reliable communication in the presence of failures. ACM

T'OCS 6, 1 (Feb. 1987).

(12] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. To

appear, Proc. 11th ACM Symposium on Operating Systems Principles, November 1987.

11

